numerical study of mixed convection in a lid-driven enclosure with a centered body using nanofluid variable properties
Authors
abstract
in the present study, mixed convection laminar flow around an adiabatic body in a lid-driven enclosure filled with nanofluid using variable thermal conductivity and variable viscosity is numerically investigated. the fluid around the body in the enclosure is a water-based nanofluid containing al2o3 nanoparticles. the vertical enclosure’s walls are maintained at constant cold temperature and the horizontal bottom enclosure’s wall is kept constant at hot temperature. top enclosure’s wall is insulated and moving with uniform velocity. the ratio of body’s length to enclosure’s length is kept constant at 1/3. the study has been carried out for the richardson number of 0.01 to 100, the solid volume fraction of 0 to 0.06 and the grashof number of 104. various results for the streamlines and isotherms as well as the local and average nusselt numbers are presented. by the use of variable properties in this study interesting results are observed.
similar resources
Numerical Study of Mixed Convection in a Lid-Driven Enclosure with a Centered Body Using Nanofluid Variable Properties
In the present study, mixed convection laminar flow around an adiabatic body in a Lid-driven enclosure filled with nanofluid using variable thermal conductivity and variable viscosity is numerically investigated. The fluid around the body in the enclosure is a water- based nanofluid containing Al2O3 nanoparticles. The Vertical enclosure’s walls are maintained at constant cold temperature an...
full textMixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure
In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperature...
full textmixed convection of variable properties al2o3-eg-water nanofluid in a two-dimensional lid-driven enclosure
in this paper, mixed convection of al2o3-eg-water nanofluid in a square lid-driven enclosure is investigated numerically. the focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. the top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperature...
full textNumerical Investigation of Double- Diffusive Mixed Convective Flow in a Lid-Driven Enclosure Filled with Al2O3-Water Nanofluid
Double-diffusive mixed convection in a lid-driven square enclosure filled with Al2O3-water is numerically investigated. Two-dimensional nonlinear governing equations are discretized using the control volume method and hybrid scheme. The equations are solved using SIMPLER algorithm. The results are displayed in the form of streamlines, isotherms, and iso-concentrations when the Richardson number...
full textMoving Lids Direction Effects on MHD Mixed Convection in a Two-Sided Lid-Driven Enclosure Using Nanofluid
Magnetohydrodynamic (MHD) mixed convection flow of Cu–water nanofluid inside a two-sided lid-driven square enclosure with adiabatic horizontal walls and differentially heated sidewalls has been investigated numerically. The effects of moving lids direction, variations of Richardson number, Hartmann number, and volume fraction of nanoparticles on flow and temperature fields have been studied. Th...
full textNumerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid
A numerical study has been done through an Al2O3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. The top and right moving walls are at low temperature. Half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. A large number of simulations for a wide range of Richardson number ...
full textMy Resources
Save resource for easier access later
Journal title:
journal of nanostructuresPublisher: university of kashan
ISSN 2251-7871
volume 2
issue 1 2012
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023